Sixth Semester B.E. Degree Examination, June/July 2017 Compiler Design Time: 3 hrs. Max. Marks: 100 Note: Answer FIVE full questions, selecting at least TWO questions from each part. ## PART - A - 1 a. List the phases of compiler in order. Use these phases to translate a = bc*cd + 50.00 into the target code in assembly language. (08 Marks) - b. What are the applications of compiler? Explain. (08 Marks) - c. Write the regular definition and transition diagram for valid unsigned number. (04 Marks) - 2 a. Why it is necessary for regular expression to define the lexical syntax of a languages? Give reasons. (04 Marks) - b. Define ambiguity. Is the following grammar ambiguous? If yes remove the ambiguity and rewrite the grammar <stmt> > if <expr> then <stmt> | if <expr> then <stmt> else <stmt> ¦ a $\langle expr \rangle \rightarrow b$ (08 Marks) c. Find the FIRST and FOLLOW set for the following grammar (05 Marks) $E \rightarrow TX$ $T \rightarrow (E)/ int Y$ $X \rightarrow \pm E/ \in$ $Y \rightarrow *T/ \in$ Fig. Q2 (c) d. When we say that the grammar G is LL(1) grammar? (03 Marks) - 3 a. Write an algorithm to construct predictive parser table. Construct a predictive parser table for grammar given in Fig. Q2 (c), and parse the string we int. (12 Marks) - b. Define handle, handle pruning with example. (03 Marks) - c. What are the actions a shift-reduce parser makes? Write the parse tree and shift-reduce configurations for the derivation $S \Rightarrow \alpha BxAz \Rightarrow \alpha Bxyz \Rightarrow \alpha rxyz$. (05 Marks) - 4 a. Write a schematic of LR parser. Write the canonical collection of set of LR(0) items and SLR parsing table for the following grammar: $E \rightarrow E + T/T$ $T \rightarrow T*F/F$ $F \rightarrow (E)/id$ (14 Marks) b. Construct LR(1) goto graph for below grammar: $X \rightarrow YZ/a$ $Y \rightarrow bZ/ \in$ Z →∈ (06 Marks) ## PART - B - a. Define synthesized attribute, inherited attributes and attribute grammar. (03 Marks) - b. Write a SDD and annotated parse tree for u*s for below grammar suitable for top-down $T \rightarrow T*F/F$ $F \rightarrow digits$ (07 Marks) e. Construct a syntax tree for expression a+b-c using the grammar $$E \rightarrow E + T/E - T/T$$ $T \rightarrow (E)/id/num$ (06 Marks) d. What is the need for eliminating left -recursion? Eliminate left recursion from SDT $$E \rightarrow E + T\{print('+')\}$$ } $E \rightarrow \Gamma$ (04 Marks) a. Which are the common three address instruction forms? Explain. (09 Marks) b. Define jumping code. Translate the following code to jumping code: if $(X < 10 \parallel X > 20 \&\& X = Y) X = 1$ (05 Marks) c. Translate the following switch statement to intermediate code. Switch (E) { ``` Case V_1: S_1 break; Case V_2: S_2 break: Case V_{n-1}: S_{n-1} break; Default: Sn ``` (06 Marks - a. Write the possible activations and activation tree corresponding to quick sort call quicksor (06 Marks (1, 9). - b. What are the basic functions and properties of memory management? Explain locality it (08 Marks program in detail. - c. What is garbage collection? What are the performance metric that must be considered when (06 Marks designing a garbage collector? - Write intermediate code and flow graph for below code 8 for i from 1 to 10 do for J from 1 to 10 do a[i, J] = 0.0 for i from 1 to 10 do a[i, i] - 1.0 (10 Marke b. What is the need for optimization? List and explain any three local optimization methods. (10 Mark ::